| 0 1 . 1 | Convert the hexadecimal numbers 27 and C9 into binary . Then, in binary , add them together to work out the total. Finally, convert the total back into hexadecimal to give the answer. | | | | | | | |---------|---|--|--|--|--|--|--| | | You must show your working. [2 marks] | 0 1.2 | Answer in hexadecimal | | | | | | | | | In decimal , what is the most negative number that can be represented using a 12 | | | | | | | | | two's complement binary integer? [1 mark] | | | | | | | | | | | | | | | | | 0 2 . 1 | The bit pattern below represents an unsigned fixed-point binary number with five bits before and five bits after the binary point. | |---------|---| | | Convert the binary number into decimal. | | | 1 0 0 1 1 0 0 0 1 | | | [2 marks] | | | | | | | | | | | 0 2 . 2 | Explain how the two's complement binary integer 00100111 can be subtracted from the two's complement binary integer 01001001 without converting the numbers into decimal. | | | [2 marks] | | | | | | | | 0 | 3 | | 1 | Figure 2 shows two unsigned binary int | eaers | |---|---|--|---|--|-------| |---|---|--|---|--|-------| Figure 2 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | |---|---|---|---|---|---|---|---| | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | What is the result in binary of multiplying the two numbers shown in Figure 2? | You must snow all your working in binary. | [2 marks | | | |--|----------|--|--| Answer | | | | | 0 3 . 2 | Convert the decimal number 6.34375 into an unsigned fixed point binary number using 8 bits with 5 bits after the binary point. | | | | | | | | | |---------|---|----------|--|--|--|--|--|--|--| | | You may use the space below for working. | [2 marks | Answer | | | | | | | | | | 0 4.1 | Convert the decimal number 177 to unsigned binary using 8 bits. | [1 mark] | |-------|---|----------| | | | | | . 1 | State, in decimal , the lowest and highest values that could be represented in unsigned binary when using 16 bits. | | | | | | | | | | | |-----|---|-------------|----------|---------|--------|-------|----------------|--------|---------|---------------|------| | | anoignoa binar | y Wilon doi | ng 10 | Dito. | | | | | | [2 | mark | | | Lowest | Highest | 2 | Figure 1 and F | igure 2 sh | ow th | e bit p | | | /o un s | signe | d bina | ary integers. | | | | | | | ı | Figu | ire 1 | | | ı | 1 | | | | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | | | | | | | | | Figu | ıre 2 | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | J | | | | Calculate the rebinary multiple | | ltiplyir | ng the | se two | numl | oers to | ogethe | er usin | ng | | | | You must show | | king ir | n binaı | у. | | | | | | | | | | | | | | | | | | [2 | mar | Answer | | | | | | | | | | | | | 7(119WCI | | | | | | | | | | | | 0 6.1 | Shade | e in one lozenge | to indicate which of the following prefixes represents 10 ⁶ [1 mar l | k] | |-------|-------|-------------------------|--|------------| | | A | kibi | 0 | | | | В | mebi | | | | | С | gibi | | | | | D | kilo | | | | | E | mega | | | | | F | giga | 0 | | | 0 6 . 2 | lable 1 shows | s two unsigned | binary | / inte | gers, | Num | ber 1 | and | Num | ber 2. | | |---------|--|------------------|---------|--------|-------|--------|---------|-------|--------|--------|--------------------------------| | | Complete the | table to show t | he res | ult in | binar | y of a | ıdding | the t | two n | umbe | rs. | | | You must con there is one. | nplete the carry | row to | o sho | w the | carr | y from | the | previo | ous co | olumn where | | | | | | 1 | able | 1 | | | | | | | | | Number 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | | | | Number 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | Result | | | | | | | | | | | | | Carry | [1 mark] | | 0 6.3 | What is the result of subtracting the two's complement binary number 0010 from the two's complement binary number 00011011? You should give your answer in two's complement binary. | | | | | |)100100 | | | | | | | You must sho | w all your work | king in | binar | y. | | | | | | [2 marks | | | | | | | | | | | | | _ | 0 6.4 | In decimal, wheeler the second | nat are the lowe | | | | /alues | s that | can b | oe rep | oreser | nted by an
[1 mark] | | | Lowest: | | | | | ı | Hiahe | st: | | | | | 0 6 . 5 | What is the decimal equipment is unsigned fixed-point is after the binary point? | | | | | | |---------|--|-----|------|-------|-----|-----------| | | | | Figu | ıre 1 | | | | | | 1 1 | 0 1 | 1 1 | 0 1 | | | | | | | | | [2 marks] | 5.4 Binary number system | PhysicsAndMathsTutor.com | |--------------------------|--------------------------| | | | | 0 7.1 | Convert the bit pattern 10001010 to hexadecimal. | [1 mark] | |-------|--|-----------| | | | | | 0 7.2 | Represent the decimal number 139 as an 8-bit unsigned binary integer . | [1 mark] | | | | | | 0 7.3 | Show how the unsigned binary number 00100011 can be added to the binary number 00101011 without converting the numbers into decimal. | unsigned | | | You must show all your working in binary. | [2 marks] | | | 0 0 1 0 0 0 1 1 + 0 0 1 0 1 0 1 1 | | | | | | | 0 7.4 | Show how the 8-bit two's complement binary integer 00011100 can subtracted from the 8-bit two's complement binary integer 00111011 converting the numbers to decimal. | | |-------|---|------------| | | You must show all your working in binary. | | | | | [2 marks] | 0 7.5 | The bit pattern in Figure 1 represents a 10-bit unsigned fixed point bin with four bits before and six bits after the binary point. | ary number | | | Figure 1 | | | | 0 1 1 1 0 1 0 0 | | | | Convert the bit pattern in Figure 1 to decimal. | [2 marks] | | | | | | | | | | | | | | | | | | 0 0 | 0 | 8 | |-----|---|---| |-----|---|---| A student has attempted to add together the binary numbers 00110011 and 10110110, but has made a mistake. The student's calculation is shown in **Figure 2** below. Figure 2 | | Α | В | С | D | Ε | F | G | Н | |--------|---|---|---|---|---|---|---|---| | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | + | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | Carry | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | | Result | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | Explain what mistake the student has made. The columns in the addition have been labelled **A** to **H** to help you make your explanation clear. [1 mark] | 0 9 | Questions 11.1, 11.2, 11.3 and 11.4 use a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement . | |---------|--| | 0 9.1 | Write the smallest positive number that can be represented by the floating point system in the boxes below. [2 marks] | | | Mantissa Exponent | | 0 9 . 2 | The following is a floating point representation of a number: 1 • 0 1 1 0 0 1 0 Mantissa Exponent | | | Calculate the decimal equivalent of the number. | | | You must show your working. [2 marks] | | | | | | | | | Answer | | 0 9 . 3 | Write the normalised floating point representation of the decimal value 0.15625 (5/32 as a fraction) in the boxes below. | | | You must show your working. [3 marks] | | | | | | Answer Mantissa Exponent | | 0 • 1 | 0 1 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | |--|--------|--------|---|---|---|---|---|------|-------|-------| | | Man | tissa | | | | ' | | Ехро | nent | t | | 0 • 1 | 1 0 | 0 | 1 | 0 | 0 | ĺ | 0 | 0 | 1 | 1 | | <u> </u> | | ıtissa | _ | ŭ | | | | | onent | | | A problem occ
Explain what p
redesigned to | roblem | has o | | | | | | | | repre | 1 0 | Questions 02.2 , 02.3 , 02.4 and 02.5 use a normalised floating point representation with a 7-bit mantissa and a 5-bit exponent, both stored using two's complement . | |---------|--| | 1 0 . 1 | Non-integer values such as -1.65 and 23/1068 can be represented by a computer using a fixed point or a floating point system. | | | State one advantage of using a floating point system over a fixed point system and one advantage of using a fixed point system over a floating point system. | | | You should assume that the two systems use the same number of bits to store a value. | | | [2 marks] | | | Advantage of floating point | | | | | | | | | | | | Advantage of fixed point | | | | | | | | | | | | | | 1 0 . 2 | The following is a floating maint pages outsting of a group box. | | 1 0 . 2 | The following is a floating point representation of a number: | | | | | | Mantissa Exponent | | | · | | | Calculate the decimal equivalent of the number. | | | Express your answer to at least four decimal places or as a fraction. You should show your working. | | | [2 marks] | | | | | | | | | | | | | | | Answer | | | Questions 02.2 , 02.3 , 02.4 and 02.5 use a normalised floating point representation with a 7-bit mantissa and a 5-bit exponent, both stored using two's complement . | | | | | | | | | | | |---------|--|----------|----------|----------|--|--|--|--|--|--|--| | 1 0 . 3 | Write the normalised floating point representation of the decimal value 1632 boxes below. | | | | | | | | | | | | | You should show your w | orking. | | [3 marks | Answer | Mantissa | Exponent | | | | | | | | | | | Questions 02.2 , 02.3 , 02.4 and 02.5 use a with a 7-bit mantissa and a 5-bit exponent, | | |-------|---|--| | 1 0.4 | State, in decimal , the highest (most positiv could be represented by this floating point s | | | | You should show your working. | [3 marks] | Highest value | Lowest value | | 1 0.5 | When the decimal value 28.25 is converted system, a rounding error occurs. | I into binary using this floating point | | | Explain: | | | | why a rounding error has occurred, and what the system might do when the value | e 28.25 is converted into binary. [2 marks] | | | | | | | | | | | | | | | | | | 1 1 | Use binary addition in 8-bit two's complement to perform the subtraction: | | |-----|---|-----------| | | 18 – 72 | | | | You must show both your working and your final answer in binary. | [2 marks] | | | | | | | | | | | | | - A particular computer uses a **normalised** floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using **two's complement**. - Four-bit patterns that are stored in this computer's memory are listed in **Figure 5** and are labelled with the letters **A** to **D**. Three of the bit patterns are valid normalised floating point numbers and one is not. Complete **Table 2** below. In the **Correct letter (A–D)** column write the appropriate letter from **A** to **D** to indicate which bit pattern in **Figure 5** is an example of the type of value described in the **Value description** column. Do not use the same letter more than once. Table 2 | Value description | Correct letter (A–D) | |---|----------------------| | A negative value that is valid in the representation. | | | The largest positive value that can be represented in the system. | | | A value that is not valid in the representation because it is not normalised. | | [3 marks] | 1 2.2 | Figure 6 shows a floating point representation of a number: | | | | | | | | | | | | | | | |-------|---|---------|-------|-------|--------|-------|-------|----------|-------|------|-------|--------|-------|--------|-----------------------| | | Figure 6 | | | | | | | | | | | | | | | | | | 0 • 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | 0 | 1 | 1 | 0 |] | | | Mantissa Exponent | | | | | | | | | | | | | 1 | | | | Calculate the decimal equivalent of the number. | | | | | | | | | | | | | | | | | You should sh | now you | ur wo | orkin | g. | | | | | | | | | | ro 1 ' | | | | | | | | | | | | | | | | | [2 marks] | Answer | | | | | | | | | | | | | | | | | In this floating number 104.7 | | | | | | t pos | sible | repre | eser | ntati | on o | f the | decii | nal | | | | | | | | | Figu | re 7 | | | | | | | | | | | 0 • 1 | 1 | 0 | 1 | 0 | 0 | 1 |] | | 0 | 1 | 1 | 1 |] | | | | | | Man | ıtissa | | | <u> </u> | J | L | | Ехр | onen | t | J | | | By converting is 105 | this nu | ımbe | er ba | ck to | deci | mal i | t can | be s | een | tha | t the | actu | al va | lue stored | | 1 2.3 | Calculate the | absolu | ıte e | rror | that l | has o | occur | red \ | when | rep | rese | entino | g 104 | I.7 in | Figure 7.
[1 mark] | Answer | 1 2.4 | Calculate the relative error that has occurred when representing 104.7 in Figure 7 . | |-------|---| | | Express your answer as a percentage to two decimal places. [1 mark] | | | Answer | | 1 2.5 | Explain why the relative error is usually considered to be a more important measure of error than the absolute error. [1 mark] | | | | | | | | 1 3.1 | Figure 2 shows a number stocomplement, with six bits be | | | | | | | | | | o's | |-------|---|---------------|-------|-------|-------------|-------|-------|--------|-------|----------|-----------| | | Figure 2 | | | | | | | | | | | | | 1 0 | 1 | 1 | 0 | 0 (| 1 | 0 | 1 | 1 | | | | | Convert the number in Figur | e 2 to | o dec | imal | | | | | | | | | | You should show your working | ng. | | | | | | | | | [2 marks] | Answer | | | | | | | | | | | | 1 3.2 | State two reasons why value usually stored in normalised | | | using | a fl | oatin | ıg po | oint r | epres | entation | | | | Reason 1 | | | | | | | | | | [2 marks] | Reason 2 | Questions 13.3, 13.4 and 13.5 use a normalised floating point representation with | |---| | an 8-bit mantissa and a 4-bit exponent, both stored using two's complement. | 1 3. Figure 3 shows a floating point representation of a number. Figure 3 Calculate the decimal equivalent of the number. Express your answer as a fraction or to 4 decimal places. | You should show your working. | [2 marks] | |-------------------------------|-----------| | | | | | | | | | | | | | | | | Answer | | Answer Mantissa Exponent | 1 | 3 | 5 | |---|---|---| **Figure 4** shows the closest possible representation of the decimal number -0.22558594 in this floating point system. Figure 4 By converting this number back to decimal it can be seen that the actual value stored is -0.2265625 Calculate the **relative error** that has occurred when representing -0.22558594 You should show your working. | Express your answer as a percentage to 2 decimal places. | [2 marks] | |--|-----------| | | | | | | | | | | | | | Answer | | | Question parts 14.1 and 14.2 use a normalised floating point representation wit | |---| | an 8-bit mantissa and a 4-bit exponent, both stored using two's complement. | 1 4. 1 Figure 7 shows a floating point representation of a number: Calculate the decimal equivalent of the number in Figure 7. | You should show your working. | [2 marks] | |-------------------------------|-----------| | | | | | | | | | | | | | | | | Answer | | | 1 4.2 | Write the normalised floating point representation of the decimal value –23.25 in the boxes below. | | | | | | | |-------|--|-------------|--|-----------|--|--|--| | | You should show yo | ur working. | | [3 marks] | Answer | Mantissa | | Exponent | | | | 1 4. 3 On each row of **Table 1**, state the name of the **Type of error** that has occurred in the **Situation** that is described. [2 marks] Table 1 | Situation | Type of error | |--|---------------| | A calculation is performed and the result of the calculation is so close to zero that the number that is stored is zero. | | | A calculation is performed and the result of the calculation is too large to fit in the available number of bits. | | | A decimal value is converted to floating point but it cannot be represented exactly in the available number of bits. | | | 1 4.4 | Explain how the floating point representation used in Question parts 06.1 and 06.2 could be modified to represent numbers more precisely, without changing the total number of bits used to represent a number. | |-------|---| | | [1 mark] | | | | PhysicsAndMathsTutor.com 5.4 Binary number system | 1 5.1 | Shade the lozenges next to all of the true statements about representing nu using fixed and floating point representations. | mbers
[2 marks] | |---------|--|--------------------| | | A processor can usually carry out calculations on fixed point numbers more quickly than calculations on floating point numbers. | 0 | | | B Fixed point numbers represent data using a mantissa and an exponent. | 0 | | | c In a given number of bits, a fixed point system can represent positive numbers that are closer to zero than a floating point system can. | 0 | | | In a given number of bits, a fixed point system can represent some numbers more precisely than a floating point system. | 0 | | | E In a given number of bits, a floating point system can represent a bigger range of numbers than a fixed point system. | 0 | | | Questions 15.2 , 15.3 and 15.4 use a normalised floating point representation an 8-bit mantissa and a 4-bit exponent , both stored using two's complement . | | | 1 5 . 2 | Figure 2 shows a floating point representation of a number: | | | | Figure 2 | | | | 1 • 0 1 1 1 0 0 0 1 1 1 Mantissa Exponent | | | | Calculate the decimal equivalent of the number in Figure 2 . | | | | You should show your working. | [2 marks] | Answer____ | 1 5.3 | The decimal number 12.765625 (which can also be expressed as $12\frac{49}{64}$) cannot be | |-------|---| | | represented exactly in this floating point system. | | | Write the closest possible normalised representation of this number in the boxes below. | | | You should show your working. [3 marks] | Answer Mantissa Exponent | | 1 5.4 | What is the smallest number of bits that would need to be added to the mantissa so that the decimal number 12.765625 could be represented exactly? [1 mark] | | A different system uses a normalised floating pole mantissa and a 6-bit exponent , both stored using | | |---|--| | Mantissa | Exponent | | In decimal , what is the most negative number that | at this system could represent? | | You should show your working. | [2 marks] | | | | | | | | | | | | | | | mantissa and a 6-bit exponent, both stored using Mantissa Mantissa In decimal, what is the most negative number that |